【综述专栏】自监督学习的一些思考
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
01
02
03
04
References:
[1]Pathak, Deepak, et al. "Context encoders: Feature learning by inpainting."Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[2]Walker, Jacob, Abhinav Gupta, and Martial Hebert. "Dense optical flow prediction from a static image."Proceedings of the IEEE International Conference on Computer Vision. 2015.
[3]Zhan, Xiaohang, et al. "Self-supervised learning via conditional motion propagation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
[4]Noroozi, Mehdi, and Paolo Favaro. "Unsupervised learning of visual representations by solving jigsaw puzzles."European Conference on Computer Vision. Springer, Cham, 2016.
[5]Misra, Ishan, C. Lawrence Zitnick, and Martial Hebert. "Shuffle and learn: unsupervised learning using temporal order verification."European Conference on Computer Vision. Springer, Cham, 2016.
[6]Wu, Zhirong, et al. "Unsupervised feature learning via non-parametric instance discrimination."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
[7]Grill, Jean-Bastien, et al. "Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning."arXiv preprint arXiv:2006.07733(2020).
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
“综述专栏”历史文章
详解深度学习中的Normalization,BN/LN/WN
自监督学习看这篇就够了!
一文读懂Faster RCNN
当可解释人工智能遇上知识图谱
CVPR 2021 自动驾驶相关论文汇总
十分钟理解Transformer
思考无标注数据的可用极限
Graph Embedding
ICRA 2021自动驾驶相关论文汇总
IJCAI 2021| 基于图学习的推荐系统综述
排序学习(Learning to rank)综述
零样本文本分类探秘
重磅发布 | 图像图形学发展年度报告(中国图象图形学报第6期综述专刊)
域适应(UDA)和半监督(SSL)的恩怨情仇
Meta Learning — Introduction to meta-learning
更多综述专栏文章,
请点击文章底部“阅读原文”查看
分享、点赞、在看,给个三连击呗!